Do intelligent tutoring systems benefit K-12 students in the U.S.? A meta-analysis

Walter Leite¹, Huibin Zhang², Shibani Rana¹, Yide Hao¹, Amber Hatch¹, Lingchen Kong¹, Huan Kuang³

- 1. University of Florida
- 2. University of Tennessee, Knoxville
- 3. Florida State University

Intelligent Tutoring Systems (ITS)

- ITS are software that interact with students as they solve problems on a turn-by-turn basis, providing feedback on the current steps and/or hints
- ITS can have different degrees of granularity of interaction with the student, such as interaction at each answer, step, or sub-step.
- ITS offer a variety of supports for learning, such as on-demand hints, just-in-time hinds, content sequencing, question sequence, feedback, and explanations
- ITS commonly incorporate a model of student knowledge.

Evidence of effectiveness of ITS

- There have been a few meta-analyses of ITS, but none focusing on U.S. K12 student populations.
- VanLehn (2011) found positive effects of step-based (d = 0.76), sub-step-based (d = 0.40) and answer-based (d = 0.31) ITS as compared to no tutoring.
- Steenbergen-Hu and Cooper (2013) found no effect of ITS in K12 education as compared to classroom instruction.
- Ma et al. (2014) found positive effects of ITS use as compared to large-group human instruction (g=0.44) with a sample of both K12 and Higher Ed. Studies.
- Kulik and Fletcher (2016) found an effect size of 0.41 with K12 samples.

Limitations of previous meta-analyses

- Previous meta-analyses have summarized studies performed worldwide, which may not generalize to U.S. K-12 student populations.
- Most previous meta-analyses of ITS did not separate K-12 from higher education studies.
- Most previous meta-analyses did not focus on experimental or quasiexperimental studies.

Objective of the Current Study

- Summarize the treatment effects of ITS in U.S. K-12 student populations.
- Evaluate heterogeneity of treatment effects.
- Evaluate studies that meet the What Works Clearinghouse standards without reservations or with reservations.

Method

- Stages:
- 1. Literature search
- 2. Article screening independently by 2 reviewers, with a 3rd resolving conflicts
- 3. Coding independently by 2 reviewers, with a 3rd resolving conflicts.
- 4. Model fitting

- Search Databases:
 - Learntechlib
 - ERIC
 - PsycInfo
 - Academic Search Premier
 - IEEE Xplore Digital Library
 - ACM Digital Library
 - Proquest Dissertation and Theses.

Method: Keywords

 [[Abstract: "intelligent tutor*"] OR [Abstract: "artificial tutor*"] OR [Abstract: "computer tutor*"] OR [Abstract: "computer-assisted tutor*"] OR [Abstract: "computer-based tutor*"] OR [Abstract: "intelligent learning environment*"] OR [Abstract: "computer coach*"] OR [Abstract: "online tutor*"] OR [Abstract: "etutor*"] OR [Abstract: "electronic tutor*"] OR [Abstract: "web-based tutor*"] OR [Abstract: "intelligent virtual"] OR [Abstract: "intelligent agent"] OR [Abstract: "cognit* tutor*"] OR [Abstract: "adapt* tutor*"] OR [Abstract: "virtual companion"] OR [Abstract: "intelligent coach*"]] AND [Abstract: student*] AND NOT [Abstract: college] AND NOT [Abstract: undergraduate] AND [Publication Date: (01/01/2011 TO 12/31/2021)]

Methods: Inclusion Criteria

- 1. One of the systems examined in the study meets definition of intelligent tutoring system
- 2. Experimental study or propensity score analysis (matching, weighting, stratification) study or regression discontinuity design of intelligent tutoring systems.
- 3. Studies published between January 1st 2011 and December 31st 2021.
- 4. Studies had to focus on students in grades K-12.
- 5. Studies had to measure the effectiveness of ITS on student achievement
- 6. Studies had to have used an independent comparison group that was non-ITS.
- 7. Studies had to be conducted with a sample from the United States of America.
- 8. Studies published in academic journals, dissertations/thesis, and conference proceedings.

Methods: Data Extraction

- MUTOS Framework (Becker, 2017) was used to extract data about five dimensions of a study:
 - Methods (M),
 - Units (U)
 - Treatments (T)
 - Observing operations (O)
 - Setting (S)

Methods: Multivariate random effect model

$$T_{ik} = \theta_{ik} + \varepsilon_{ik} = \mu + \eta_k + \phi_{ik} + \varepsilon_{ik}$$

 μ is the average effect size across studies, Var $(\eta_k) = \tau^2$ indicates between-study variation of true study-average effect

size, Var $(\phi_{ik}) = \omega^2$ is within-study variation of true effect size, and ε_{ik} is the sampling error. Var $(\varepsilon_{ik}) = s_{ik}^2$ is known.

Methods: Moderator Analysis

$$T_{ik} = \sum_{1}^{P} \beta_p X_{pk} + \eta_k + \phi_{ik} + \varepsilon_{ik}$$

• X_{pk} indicates the p^{th} covarite in the study k and β denote the corresponding regression coefficients.

Results: Prisma

Results: Overall Effect Size

- There were 95 effect sizes in 26 articles.
- There was a significant positive effect size of ITS on U.S. K-12 students' learning outcomes (g=0.360, SE=0.046, p<0.001)</p>
- Publication Bias: For Rosenthal approach, the fail-safe N is 51008 with a target significance level of 0.05, while the fail-safe N is 299 for the Orwin approach with a target effect size of 0.10.

Meta-regression Analysis for M Dimension

Moderator	Coefficient (β)	SE	t-Statistic	p-value
Type of Publication				
Conference proceeding	<0.01	0.16	0.02	0.99
Dissertation or thesis	0.44	0.16	2.78	0.04
Journal article	0.32	0.06	5.79	0.02

Meta-regression Analysis for T Dimension

Moderator	Coefficient	SE	t-	p-value
	(β)		Statistic	
ITS use in school				
As a separate activity	0.80	0.34	2.34	0.14
As the main instruction method	0.83	0.35	2.39	0.16
As a partial substitute for the				
regular curriculum	0.53	0.19	2.73	0.03
Not applicable	0.54	0.47	1.16	0.29
Other	0.63	0.47	1.35	0.24

Meta-regression Analysis for O Dimension

Moderator	Coefficient (β)	SE	t-Statistic	p-value
Type of learning outcome				
Mathematics	0.91	0.11	8.38	<0.001
Reading	1.21	0.14	8.88	0.01
Science	0.54	0.18	3.02	0.06
Writing	1.27	0.14	8.97	<0.001
Instructor type				
Different instructors for treatment and control groups	-0.52	0.06	-8.49	0.01
No instructor	-0.23	0.14	-1.69	0.21
Not specified	-0.47	0.00	-114.60	0.01
Same instructor for both treatment and control groups	-0.52	0.49	-1.06	0.39
Measurement Timing				
End of School Year	0.00	0.04	0.04	0.97
End of Semester	0.48	0.07	6.99	<0.001
End of the unit	0.11	0.12	0.89	0.46
Immediately after Intervention	0.27	0.10	2.65	0.07

UF

Results: Moderation by Type of Control Group

Type of Publication	K	g	95% CI	p-value
Classroom Instruction	48	0.414	0.257- 0.571	<0.05
Small Group	1	-0.181	-1.226- 0.865	0.732

Results: Moderation by Type of Publication

Type of Publication	К	g	95% CI	p-value
Dissertation or Thesis	9	0.506	0.088- 0.924	<0.05
Journal	84	0.357	0.238- 0.475	<0.05
Conference	2	0.061	-0.672-0.793	0.870

Results: Moderation by ITS Use in School

ITS Use in School	К	g	95% CI	p-value
As a partial substitute for the regular curriculum	6	0.249	-0.168-0.666	0.242
As a separate activity	34	0.408	0.205-0.612	<0.05
As the main instruction method	47	0.399	0.243-0.555	<0.05
Other	1	0.090	-0.946-1.125	0.864

Results: Moderation by Learning Outcome

Learning Outcome	K	g	95% CI	p-value
Mathematics	26	0.272	0.060-0.483	<0.05
Reading	62	0.358	0.226- 0.490	<0.05
Science	3	0.137	-0.437-0.711	0.637
Writing	4	1.011	0.503- 1.519	<0.05

Π

Results: Moderation by Instructor Type

Instructor Type	Κ	g	95% CI	p-value
Different instructors for treatment and control groups	73	0.346	0.217-0.476	<0.05
Same instructor for treatment and control groups	4	0.691	0.071-1.311	<0.05
No Instructor	3	0.979	0.086-1.873	<0.05

Results: Moderation by Measurement Timing

Measurement Timing	Κ	g	95% CI	p-value
End of Semester	1	0.564	-0.700-1.829	0.378
End of School Year	41	0.273	0.109-0.437	<0.05
End of the Unit	6	0.218	-0.211-0.647	0.316
Immediately after	26	0.620	0.387-0.854	<0.05
Intervention				

Conclusion

- The effect size of ITS we identified with studies of US K-12 samples was moderate (i.e. g=0.360), which corroborates Kulik and Fletcher's (2016) finding of a significant moderate effect (Glass $\Delta = 0.41$.) with K-12 samples.
- Our results contrast with Steembergen-Hu and Cooper's (2013) findings of no effect of K-12 mathematics ITS.
- Studies in dissertations or theses had a higher effect size than studies published in journals.
- School districts could increase the benefits of having computers available to all students by making ITS available to students on these computers.

Thank you!

walter.leite@coe.ufl.edu

https://virtuallearninglab.org/

