

Application of Machine Learning Algorithms to Detect Treatment Effect Heterogeneity for Three-Level Multisite Experiments

Wei Li, Walter Leite, & Jia Quan College of Education, University of Florida

> April 13, 2024 The AERA 2024 Conference

Motivation (1)

- Multilevel randomized controlled trials (MRCTs) have been widely in education
 - Average treatment effect (ATE)
 - Heterogenous treatment effects (HTE)
 - Under what conditions for whom an intervention works
- Moderation analysis is traditionally used to evaluate HTE
 - An interaction between treatment and moderator (e.g., students' or schools' features)
 - Moderators are usually pre-specified which covariates modify ATE?
- Recent development includes the use of machine learning (ML) methods to explore the HTEs
 - Identify subgroups with *significant effects*, post-analysis what is the expected treatment effect for a group/individual with given characteristics
 - Select moderators from a potentially large number of covariates

Motivation (2)

- MRCTs have nested data structures
 - E.g., students nested within teachers nested with schools
 - Cluster design treatment at the school level
 - Block/multisite design treatment at the student or teacher level
- Observations in the same clusters/sites are correlated rather than independent
 - Multilevel models, cluster robust SEs, bootstrap, etc. have been used to address the dependency
- Similarly, when applying ML methods to estimate CATE, applied researchers still need to consider the nested data structure
 - Most prior literature assumes the participants are independent
 - There is a lack of literature to guide educational researchers in appropriately applying ML methods for clustered data when evaluating HTEs

Purpose

- Review the current available ML methods and tools that account for the nested data structure when explore HTEs
 - Focus on two ML methods Cluster-Robust Causal Forest (CF) & Generic ML
- Demonstrate the application of these two methods using the dataset from a large multisite experimental study (Leite et al., 2023)
 - Provide recommendations to applied researchers on how to choose the appropriate methods and statistical package among alternative ML methods

An Illustrative Example

- A large-scale multisite field experiment embedded within a virtual learning environment (VLE) for Algebra
 - Examine the effects of a video recommendation system
 - Students were randomly assigned to receive two types of video recommendations
 - Personalized video recommendations or generic recommendations
 - 2995 students nested within 54 teachers from 42 schools in three large school districts
 - Measures: 216 student- and teacher-level variables
 - Teacher survey usage of VLE, instructional practice, perception of disruptions due to COVID, etc. (full survey available at https://osf.io/h5tpn/)
 - Student variables gender, ethnicity, pretest score, absent days, etc.
 - Converted into 516 predictors, with 484 dummy-coded indicators
 - Some algorithm requires dummy-coding categorical variables

Estimands of Interest

• Conditional average treatment effect (CATE)

$$\tau(x) = E[Y_{ij}(1) - Y_{ij}(0) | X = x] = u_1(x) - u_0(x)$$
(1)

- X a possibly high-dimensional vector of covariates
- Require stable unit treatment values, unconfoundedness, and overlap
- Best Linear Predictor (BLP) of CATE
- Note that, $ATE = \tau = E[\tau(x)]$, site average or individual average; once we know CATE, we immediately know ATE
- Non-overlapping subgroup analysis
 - E.g., Sorted Group Average Treatment Effects (GATES)

$$\tau(G_k) = E[Y_{ij}(1) - Y_{ij}(0)|G_k]$$
(2)

• Moderator effect

$$\tau(m) = E[Y_{ij}(1) - Y_{ij}(0) | M = m] (3)$$

• M is a subset of predictors of X

Models: OLS with Teacher Fixed Effects and Interactions

• Traditional Moderator Analysis: Interaction approach

 $y_{ij} = \gamma_0 + \gamma_1 T_{ij} + \gamma_2 M_{ij} + \gamma_3 T_{ij} M_{ij} + u_j + T_{ij} u_j + r_{ij} (4)$

- y_{ij} test score for student i in teach j
- T_{ij} treatment indicator
- M_{ij} student-level moderator
- u_j teacher dummy variables
 - MLM teacher-level random effect that follows a normal distribution
- r_{ij} level-1 error
- γ_3 moderator effects, not a causal effect (<u>Dong et al., 2022</u>)
- $\tau(M_{ij}) = \gamma_1 + \gamma_3 M_{ij}$, a causal effect
- Assume clusters have an additive effect on the outcome
 - Same functions for all sites

Models: S/T-learner

• Fit *(separate)* models to the treatment and control groups

$$E(Y|T = 1, X = x) = f_1(x)$$

$$E(Y|T = 0 X = x) = f_0(x)$$

• Then, CATE is

$$\tau(x) = f_1(x) - f_0(x)$$
$$Var(\hat{\tau}(x)) = Var(\hat{f}_1(x)) + Var(\hat{f}_0(x))$$

• To our best knowledge, no methods or tools consider the nested data structure for S/T-learner

Models: Cluster-Robust RF

• Cluster-robust RF (Athey & Wager, 2019)

$$y_{ij} = \alpha_j(x) + \tau_j(x)T_{ij} + e_{ij}, \tau(x) = E[\tau_j(x)]$$
(5)

- $\alpha_j(x)$ control group average for site (e.g., teacher) j
- $\tau_j(x)$ CATE in site (e.g., teacher) j
- $\tau(x)$ CATE across sites; site average
 - Give each cluster/site equal weight
 - Accurate for predicting effects on a new student from a new site
- Each cluster has its own main $(\alpha_j(x))$ and treatment effect function $(\tau_j(x))$

Models: Generic ML

• Generic ML (Chernozhukov et al., 2023)

$$y_{ij} = b_0(x) + T_{ij}s_0(x) + e_{ij}, \tau(x) = s_0(x)$$
(6)

- $b_0(x) = E[y_{ij}|T_{ij} = 0, x]$ baseline conditional average; mean for the control group across sites
- $s_0(x)$ CATE across level-1 units (e.g., students); individual average
- Site dummy variables can be included when estimating $b_0(x)$ and $s_0(x)$
- An application of double/debiased ML
 - Utilize Neyman orthogonal moments and cross-fitting to address regulation bias and overfitting
- Focus on key features of CATE instead of CATE: e.g., BLP of CATE
 - Sparsity S_0 can be well-approximated by a function that only depends on a lowdimensional subset of X

Why/How to Consider Nested Data Structure

- In general, ML methods for CATE include three main steps:
 - Splitting the data into training and test sets cluster-based split?
 - Use the training set and ML algorithms to build a prediction model will considering cluster membership improve prediction?
 - Use the test set to estimate CATE/BLP and their standard errors (SEs) should we use cluster-robust SEs or something similar?
- Based on our review of all the currently available methods and packages, only two algorithms – cluster-robust CF and the GenericML consider the nested data structure in at least one step
 - Not consider alternative methods, e.g., Bayesian additive regression trees (BART), Targeted MLE, Meta learners (e.g., S-, T- learners)

How does Cluster-Robust CF Address the Nesting Effects?

- The cluster-robust CF algorithm considers the nested data structure in *all* three steps:
 - (1) for each b= 1, ..., B, draw a **subsample of clusters** and then draw a random sample from each cluster as the training data;
 - (2) grow a tree via recursive partitioning on each such subsample of the data;
 - (3) make the out-of-bag predictions: to account for the potential within cluster dependency, an observation *i* is considered to be out-of-bag if its cluster was not drawn in step (1)
- Implemented through *grf* R package
 - SE of CATE jackknife SE
 - Report cluster-robust SEs for BLP

How does the GenericML algorithm Address the Nesting Effects? (1)

- The GenericML algorithm (Chernozhukov et al., 2023) estimates the best linear predictor (BLP) of CATE through the following steps:
 - (1) randomly split the data into training and test sets; without consideration of clusters
 - (2) estimates the CATE with any number of selected ML methods (e.g., random forest) using the training data; *can potentially consider clustering effects*
 - (3) use OLS regression to obtain the BLP of the CATE using the test data; include site fixed effects (dummy variables or demean); easy to report clusterrobust SE from OLS estimation;
- Note that
 - Random forest Build B trees which place covariate splits that maximize the squared difference in subgroups means
 - Causal forest Greedily places covariate splits that maximize the squared difference in **subgroup treatment effects**

How does the GenericML algorithm Address the Nesting Effects? (2)

- Implemented through the GenericML R package
 - Estimate the Sorted group average treatment effects (GATEs): creating five groups of participants using quintiles of the CATE distribution
 - Perform classification analysis (CLAN) to explore the relationships between covariates and the CATE
 - Report cluster-robust SEs for BLP, GATEs, and CLAN
 - OLS estimation easy to deal with clustering

Results: Cluster-Robust RF

Method	ATE	SE
CF w/o clustering	-0.029	0.029
Cluster-Robust CF	-0.058	0.044

Note. We used lasso, elastic net, support vector machine, XGBoost, and random forests (RF). RF is the best learner.

Blue: CATE estimates from cluster-robust CF Yellow: CATE estimates from CF w/o clustering

Results: GenericML (RF)

					Gro
Gene	ricML	Estimate	P-Value		Gro
With Teacher Fixed Effects	ATE	-0.030	0.434	Without Teacher Fixed	Gro
				Effects	Gro
	Treatment	0.917	0.000		Gro
Without Teacher Fixed Effects	Heterogeneity	-0.025	0.535		Group 5 -
	ATE	-0.023	0.555		Gro
	Treatment	0.976	0.000		Gro
	Heterogeneity			With Teacher Fixed	Gro
				Effects	Gro

GenericML	GCATE	Estimate	P-Value
	Group 1	-0.657	0.000
	Group 2	-0.199	0.027
out Teacher Fixed	Group 3	0.003	0.955
Effects	Group 4	0.175	0.051
	Group 5	0.525	0.000
	Group 5 - Group 1	1.179	0.000
	Group 1	-0.627	0.000
	Group 2	-0.185	0.030
th Teacher Fixed	Group 3	-0.005	0.952
Effects	Group 4	0.167	0.056
	Group 5	0.482	0.000
	Group 5 - Group 1	1.099	0.000

Results: BLP of CATE from GenericML (RF)

Black: BLP of CATE estimates without teacher fixed effects

Red: BLP of CATE estimates with teacher fixed effects

Discussion and Conclusion

- Clustering effects should be considered when estimating CATE
 - No perfect solution now
 - It seems CF is preferred
- Differences of CATE estimates between cluster-robust CF and Generic ML
 - CATE or BLP of CATE
 - Site average or individual average
- Future directions
 - Alternative methods: BART, R-learners, TMLE
 - Simulations study
 - Cluster design

Thank you! wei.li@coe.ufl.edu

Appendix: ML and CATE

CR-CF

$$\hat{\tau}_{j} = \frac{1}{n_{j}} \sum_{\{i:A_{i}=j\}} \widehat{\Gamma}_{i}, \quad \hat{\tau} = \frac{1}{J} \sum_{j=1}^{J} \hat{\tau}_{j}, \quad \hat{\sigma}^{2} = \frac{1}{J(J-1)} \sum_{j=1}^{J} (\hat{\tau}_{j} - \hat{\tau})^{2},$$

$$\widehat{\Gamma}_{i} = \hat{\tau}^{(-i)} \left(X_{i}\right) + \frac{Z_{i} - \hat{e}^{(-i)}(X_{i})}{\hat{e}^{(-i)} \left(X_{i}\right) \left(1 - \hat{e}^{(-i)}(X_{i})\right)} \left(Y_{i} - \hat{m}^{(-i)}(X_{i}) - \left(Z_{i} - \hat{e}^{(-i)}(X_{i})\right) \hat{\tau}^{(-i)}(X_{i})\right).$$

$$(8)$$

BLP of CATE (Chernozhukov, 2018)

Conditional average treatment effect (CATE):

$$g_0(1, X) - g_0(0, X)$$

- captures (learnable) heterogeneity in treatment effects under unconfoundedness
- generally high-dimensional nonparametric object inference impractical (impossible?)

Another potential summary is best linear predictor (BLP) of CATE given pre-specified (low-dimensional) vector W

• other summaries possible; Semenova and Chernozhukov (2021)

Inference for BLP is possible using orthogonal score for ATE

6.1. **Implementation Algorithm.** We describe an algorithm based on the first identification strategy and provide some specific implementation details for the empirical example.

Algorithm 1 (Inference Algorithm). The inputs are given by the data on units $i \in [N] = \{1, ..., N\}$.

Step 0. Fix the number of splits *S* and the significance level α , e.g. S = 100 and $\alpha = 0.05$.

Step 1. Compute the propensity scores $p(Z_i)$ for $i \in [N]$.

Step 2. Consider *S* splits in half of the indices $i \in \{1, ..., N\}$ into the main sample, *M*, and the auxiliary sample, *A*. Over each split s = 1, ..., S, apply the following steps:

- a. Tune and train each ML method separately to learn $B(\cdot)$ and $S(\cdot)$ using A. For each $i \in M$, <u>compute the predicted baseline effect</u> $B(Z_i)$ and predicted treatment effect $S(Z_i)$. If there is zero variation in $B(Z_i)$ and $S(Z_i)$ add Gaussian noise with small variance to the proxies, e.g., a 1/20-th fraction of the sample variance of Y.
- b. Estimate the BLP parameters by weighted OLS in $M, {\rm i.e.},$

 $Y_i = \widehat{\alpha}' \underline{X_{1i}} + \widehat{\beta}_1 (D_i - p(Z_i)) + \widehat{\beta}_2 (D_i - p(Z_i)) (S_i - \mathbb{E}_{N,M} S_i) + \widehat{\epsilon}_i, \ i \in M$

such that $\mathbb{E}_{N,M}[w(Z_i)\widehat{\epsilon}_iX_i] = 0$ for $X_i = [X'_{1i}, D_i - p(Z_i), (D_i - p(Z_i))(S_i - \mathbb{E}_{N,M}S_i)]'$, where $w(Z_i) = \{p(Z_i)(1 - p(Z_i))\}^{-1}$ and X_{1i} includes a constant, $B(Z_i)$ and $S(Z_i)$.

c. Estimate the GATES parameters by weighted OLS in $\boldsymbol{M},$ i.e.,

$$Y_i = \widehat{\alpha}' X_{1i} + \sum_{k=1}^K \widehat{\gamma}_k \cdot (D_i - p(Z_i)) \cdot 1(S_i \in I_k) + \widehat{\nu}_i, \ i \in M,$$

such that $\mathbb{E}_{N,M}[w(Z_i)\hat{\nu}_iW_i] = 0$ for $W_i = [X'_{i1}, \{(D_i - p(Z_i))1(S_i \in I_k)\}_{k=1}^K]'$, where $w(Z_i) = \{p(Z_i)(1 - p(Z_i))\}^{-1}$, X_{1i} includes a constant, $B(Z_i)$ and $S(Z_i)$, $I_k = [\ell_{k-1}, \ell_k)$, and ℓ_k is the (k/K)-quantile of $\{S_i\}_{i\in M}$.

d. Estimate the CLAN parameters in M by

 $\widehat{\delta}_1 = \mathbb{E}_{N,M}[g(Y_i, Z_i) \mid S_i \in I_1] \quad \text{and} \quad \widehat{\delta}_K = \mathbb{E}_{N,M}[g(Y_i, Z_i) \mid S_i \in I_K],$

where $I_k = [\ell_{k-1}, \ell_k)$ and ℓ_k is the (k/K)-quantile of $\{S_i\}_{i \in M}$.

Group Average Treatment Effects (GATEs)

Group average treatment effects (GATEs):

- Let *G* be an indicator for belonging to some group of interest (e.g. an education category)
- GATE = $E[g_0(1, X) g_0(0, X)|G = 1]$
- Can use to summarize heterogeneity along pre-specified directions of interest
- Average treatment effect on the treated (ATET) is a special case
- For $\psi_1(Y, Z, X)$ defined above, orthogonal moment for GATE is

$$\mathrm{E}\left[\frac{G}{p_G}\psi_1(Y,Z,X)\right]=0$$

• Nuisance functions: $E[Z|X] = m_0(X); E[Y|Z, X] = g_0(Z, X); p_G = E[G]$

- 1. Partition sample indices into random folds of approximately equal size: $\{1, ..., n\} = \bigcup_{k=1}^{K} I_k$. For each k = 1, ..., K, compute estimators $\hat{p}_{[k]}$, $\hat{g}_{[k]}$, and $\hat{m}_{[k]}$ of E[G] and the conditional expectation functions $g_0(Z, X) = E[Y|Z, X]$ and $m_0(X) = E[Z|X]$ leaving out the k^{th} block of data and enforcing $\epsilon \leq \hat{m}_{[k]} \leq 1 - \epsilon$.
- 2. For each $i \in I_k$, let

$$\begin{split} \widehat{\psi}(Y_{i}, Z_{i}, X_{i}, G_{i}; \alpha) &= \frac{G_{i}}{\widehat{p}_{[k]}} \left(\widehat{g}_{[k]}(1, X_{i}) - \widehat{g}_{[k]}(0, X_{i}) + \frac{Z_{i}(Y_{i} - \widehat{g}_{[k]}(1, X_{i}))}{\widehat{m}_{[k]}(X_{i})} \right. \\ &\left. - \frac{(1 - Z_{i})(Y_{i} - \widehat{g}_{[k]}(0, X_{i}))}{1 - \widehat{m}_{[k]}(X_{i})} \right) - \frac{G_{i}}{\widehat{p}_{[k]}} \alpha. \end{split}$$

Compute the estimator $\widehat{\alpha}$ as the solution to $\mathbb{E}_n[\widehat{\psi}(W_i; \alpha)] = 0$ which yields

$$\widehat{\alpha} = \frac{\mathbb{E}_{n} \left[\frac{G_{i}}{\widehat{p}_{[k]}} \left(\widehat{g}_{[k]}(1, X_{i}) - \widehat{g}_{[k]}(0, X_{i}) + \frac{Z_{i}(Y_{i} - \widehat{g}_{[k]}(1, X_{i}))}{\widehat{m}_{[k]}(X_{i})} - \frac{(1 - Z_{i})(Y_{i} - \widehat{g}_{[k]}(0, X_{i}))}{1 - \widehat{m}_{[k]}(X_{i})} \right) \right]}{\mathbb{E}_{n} \left[\frac{G_{i}}{\widehat{p}_{[k]}} \right]}.$$

3. Let

$$\widehat{\varphi}(Y_i, Z_i, X_i, G_i) = \frac{\widehat{\psi}(Y_i, Z_i, X_i, G_i; \widehat{\alpha})}{\mathbb{E}_n \left[\frac{G_i}{\widehat{p}_{[k]}}\right]}.$$

Construct standard errors via

$$\sqrt{\widehat{\mathsf{V}}/n}, \quad \widehat{\mathsf{V}} = \mathbb{E}_n[\widehat{\varphi}(Y_i, Z_i, X_i, G_i)^2]$$

and use standard normal critical values for inference.

- Variable importance
 - CF-noncluster: [1] "pretest" "Q34_1_feb" "Q13_8_feb_2" "Q25_apr" "EOC_scale_score"
 - Cluster-robust CF: [1] "pretest" "EOC_scale_score" "absent_days" "EOC_achieve_level" "mean_num_received"

Permutation Importance

	Variable Name	Rank	Survey Item	Parent Code	
			How frequently did you check each of these Algebra Nation reports during the past month? - Video		
	Q10_7_feb	1	recommendation views	Fidelity of Implementation	
	Q93_13_may	2	Thinking about your ability to provide high-quality instruction during Spring 2021, how challenging do you find: - Balancing personal and work life	Organizational, Personal?	
	years_teaching	3	How many years have you been teaching (not including this current school year)? (a variable from Feb teacher survey)	Experience	
	Q20_2_feb	4	During the past month, did you use Algebra Nation Check Your Understanding quizzes using any of the following methods? - Assigned to groups/centers.		
	Q20_2_160	-	When a low-achieving child progresses in mathematics, it is usually due to		
	Q69_apr	5	extra attention given by me.	Teacher Efficacy	
UF College of Education UNIVERSITY of FLORIDA					