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Objective of the 
Video Recommendation 
System

Provide students with a 
personalized video recommendation 
that takes into account their current 
knowledge as well as their 
engagement with the system. 



Context: Math Nation



Theoretical Background

‣ Vygotsky’s theory of Zone of Proximal Development

‣ D'Mello, Dieterle and Duckworth’s advanced, analytic, automated (AAA) 
approach to measure engagement for interactions with digital learning 
technologies

‣ Item Response Theory
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The algorithm for new videos
 

ALGORITHM 1. New Video Recommendation Policy for Student 𝒊 

 
Inputs: initial ability estimates {𝑎𝑖𝑗 (0)}, 1 ≤ 𝑖 ≤ 𝑛, 1 ≤ 𝑗 ≤ 𝑟.  

Output: sequence of recommended videos 𝑗 ̂(𝑡) ∈ {1, . . . , 𝑟}, 𝑡 ≥ 0    

for 𝒕 = 𝟎, 𝟏, . ..do 

       Compute peer ability-estimates 

𝑏𝑗 (𝑡)  = 𝑛−1 𝑎𝑖𝑗

𝑛

𝑖=1

(𝑡).  

       Compute the probability distribution {𝑝𝑗 (𝑡)}, 𝑗 = 1,2, . . . , 𝑟,  

𝑝𝑗 (𝑡) =
𝑒𝑥𝑝 [− 𝑤𝑗  (𝑎𝑖𝑗 (𝑡)−𝑏𝑗 (𝑡))]

∑ 𝑒𝑥𝑝 [− 𝑤𝑗  (𝑎𝑖𝑗 (𝑡)−𝑏𝑗 (𝑡))]𝑟
𝑗 =1

. 

       Sample 𝑗 ̂(𝑡) 𝑓𝑟𝑜𝑚 𝑡ℎ𝑒 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 {𝑝j(𝑡)},1 ≤ 𝑗  ≤𝑟 . 

       Read {𝑎𝑖𝑗 (𝑡 + 1)} ,1 ≤ 𝑖 ≤ 𝑛 ,1 ≤ 𝑗 ≤ 𝑟 from the database. 

end for 
 



The video recommendation system
CYU
score

Engagement 
Threshold

Probability of Recommendation 
of Category C

0 < 3.5
p(C=1) = 0.7
p(C=2) = 0.3

0 >= 3.5
p(C=1) = 0.3
p(C=2) = 0.7

1 < 3.5
p(C=1) = 0.3
p(C=4) = 0.7

1 >= 3.5
p(C=1) = 0.3
p(C=3) = 0.7

2 Any p(C=3) = 1
3 Any p(C=5) = 1

Five categories of video recommendation: 
1) View new video; 
2) 2) Review current topic video with a new tutor; 
3) 3) Review segment of current video with current tutor; 
4) 4) Review segment of current video with a new tutor; 
5) 5) View next video in curriculum sequence. 



‣ Did the students, who were offered video recommendations perform better on the 
post-test assessments than the students who were not offered such 
recommendations?

‣ What is the causal effect of video recommendations on the achievement of those 
students who watched the recommended videos when offered?

Research Questions



Field Experiment

 Three large school districts in Florida:
18,925 students from 152 teachers in 149 schools 

‣ The study lasted for 17 weeks during the Spring 2020 semester (i.e., February 
3rd to May 31st)

‣ Transition on March 17th when all schools were closed due to the COVID-19 
pandemic and instruction resumed online.  



Average Treatment Effects (Intention to Treat)

Before school closure After school closure

Coefficient SE p-value Coefficient SE p-value

(Intercept) -0.752 0.176 0.000 -0.339 0.602 0.573

ITT 0.054 0.027 0.043 -0.009 0.030 0.775

Pretest -0.012 0.040 0.764 0.025 0.112 0.825

Engagement -0.021 0.022 0.349 -0.007 0.028 0.805



‣ Before schools closed, the proportion of compliers among the students who were 
assigned to the treatment group was = 0.15921, SE = 0.0188, CI = [0.122, 0.196]. 

‣ Before-closure period, the final CACE standardized estimate is 0.34 (SE = 0.17, p  
= 0.043)

‣ After schools closed, the proportion of compliers was = 0.1123, SE = 0.0112, CI = 
[0.090, 0.134]. 

‣ The CACE was not statistically significant for the period after schools closed 
(CACE = -0.076, SE = 0.266, p = 0.775). 

Complier Average Causal Effect



‣ Completed a longer replication of the experiment (November 24th 2020 to June 
1st 2021) to be presented at L@S 2022

‣ Key questions:
 Are the effects larger with a longer exposure?
 Do students who use the system more extensively benefit more?
 Are there certain groups of students who benefit more?
 Are there certain teaching strategies that moderate the impact of the video 

recommendation system?
 What are the fairness and equity implications of personalization?

Where do we go from here?


